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LIQUID CRYSTALS, 1988, VOL. 3, No. 4, 453-468 

Mass transport in a chiral nematic/nematic liquid crystal system 

by H. HAKEMIt 
Corporate Research Division, Louis Laboratory, S.C. Johnson and Son, Inc., 

Racine, Wisconsin 5303, U.S.A. 

(Received 23 March 1987; accepted 7 December 1987) 

The optical microscopic mass transport technique has been used to study 
diffusion phenomenon in a chiral nematic/nematic solute/solvent mixture. Analy- 
sis of the concentration-distance, concentration-time and distance-time of the 
diffusion profile gave the diffusion coefficient of the system as a function of time, 
distance and concentration, respectively. The mutual diffusion coefficient of the 
system was independent of the distance and time, showing an average value of 
2.65 x lo-’ cm2 s-I. In non-steady state diffusion, the diffusion coefficient was 
dependent on both distance and time. The diffusion coefficient exhibited an inverse 
relation with the local concentration of the chiral solute. The self-diffusion coef- 
ficient of the nematic solvent gave a value of 3 4  x 10-7cm2s via extrapolation 
to zero concentration of the solute. 

1. Introduction 
Diffusion phenomena in liquids have been the subject of extensive theoretical and 

experimental studies. A comprehensive review of this subject has recently been 
published [I].  There exist a number of well-developed and accurate experimental tech- 
niques for the evaluation of diffusion coefficients in fluid systems. These techniques 
are based either on macroscopic (mass transport) or microscopic (N.M.R., light 
scattering, etc.) approaches. 

In the mass transport techniques, the diffusion coefficient of the system is deter- 
mined by the decay of a macroscopic concentration gradient in either a binary or a 
multicomponent solute/solvent mixture. Depending on the nature and the molecular 
structure of the components, the mutual (inter-) diffusion or the tracer (intra-) 
diffusion coefficients of a system may be determined. The physical foundation and the 
mathematical formulation of these mass transport approaches are based on the Fick’s 
laws of diffusion. In the microscopic techniques, however, with the absence of bulk 
concentration gradient, both the tracer and the self-diffusion coefficients can be deter- 
mined from the transient relaxation or the time-average autocorrelation functions. 
The physical concepts of this approach are based on the molecular fluctuations and 
the brownian motion concepts, where the corresponding mathematical formulations 
are based on random walk statistics. 

Although the exact relation between the diffusion coefficients obtained by these 
two approaches is not yet completely understood, the physical foundations of dif- 
fusion by the molecular fluctuations and the fickian concepts are the same. Both 
approaches result into the same mathematical formulation which is referred to as the 
diffusion equation. In one dimension, the diffusion equation is described by the 

t Present address: Specialty Polymer Department, Eniricerche S.p.A., 20097 S. Donato 
Milanese, Milan, Italy. 
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differential equation [2 ]  

dc ld t  = d / d x ( D  dcjdx), ( 1 )  

where D is the diffusion coefficient and x i s  the penetration distance of the solute with 
concentration c at time t .  When D is assumed to be constant, equation (1) is further 
simplified to 

dcldt = D(d?c/dx2). (2) 

Although in equation (2), D is assumed to be independent of x and t ,  its independence 
from c is not implicit in this equation. In both macroscopic and microscopic tech- 
niques, determination of the diffusion coefficient from equation ( 2 )  is based on a linear 
relation between the concentration gradient and the material flux. The concentration 
gradient may be of the macroscopic or the microscopic scale. Accordingly, the 
interpretation of D depends on  the nature of the experimental method and the 
evaluation of the diffusion coefficient. In mass transport studies of liquids, evaluation 
of the diffusion coefficient is based on the measurement of the concentration distri- 
bution as a function of the penetration distance or diffusion time. For one-dimensional 
diffusion, there are only three fundamental experimental parameters of concen- 
tration c (or its equivalent value), distance x and time t. Accordingly, a one-dimensional 
diffusion profile may be shown by a three dimensional surface bound to a c-x-t 
Cartesian coordinate system (see 9 4). 

In spite of the diversity of the mass transport techniques in liquids [l], they all are 
limited to the measurement of the diffusion coefficients in either the c-x frame (at 
constant t )  or the c-t frame (at constant x). None of the conventional mass transport 
methods are capable of providing the analysis of the diffusion profile in the x-t frame 
(at constant c). Considering the recent experimental developments of the optical micro- 
scopic mass transport technique (OMMT) in both thermotropic [3-61 and lyotropic 
[7,8] liquid-crystalline systems, no attempt has yet been made to analyse the c-x-t 
diffusion surface and determine the corresponding diffusion coefficients. In the 
present study we have determined the diffusion coefficients in a chiral nematic/nematic 
system as a function of time, distance and concentration. From a dynamic analysis 
of the c-x-t diffusion surface, we found that above a characteristic space-time value 
the diffusion was in the steady state. We have determined both the differential and the 
integral values of the diffusion coefficient in the mesomorphic system. In this experi- 
ment, since the uniaxial orientation of the nematic director and the cholesteric helix 
axis was obtained only by the surface treatment, the effect of the diffusion anisotropy 
was averaged over the helical pitch within the whole range of the concentration 
gradient (see [4(e)]. 

2. Experimental 
The materials used in this study were nematic 4-n-pentyl-4’-cyanobiphenyl (SCB), 

and its chiral isomer 4-(2’-methyl)butyl-4’-cyanobiphenyl (CBI 5). 5CB exhibits 
a nematic phase within the temperature range 22 to 35”C, whereas the non- 
mesomorphic CBI 5 has a virtual cholesteric phase below - 30°C. The compounds 
were obtained from BDH Chemicals Ltd and were used without further purification. 
The diffusion cell consisted of an optical precision glass container with outside 
dimensions of 0.9 x 4.5cm and an inside thickness of 5 x IO-jcm. 
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Mass transport in liquid crystals 455 

The diffusion path was prepared by placing the 5CB nematic solvent between the 
treated surfaces of the optical cell. The surfaces were coated with polyvinyl-alcohol 
(PVA) and rubbed unidirectionally to induce a homogeneous (parallel) alignment in 
the nematic film. The diffusion profile was established by allowing a small droplet of 
a 4.95 per cent (w/w) chiral nematic (cholesteric) solution of CBlSjSCB to diffuse 
linearly into the uniaxial nematic solvent. The diffusion cell was placed into a specially 
designed microscopic hot stage using a Brinkmann Lauda RM6 temperature control 
circulator and the temperature was kept constant at 24 ? 0.5"C during the diffusion 
process. The liquid-crystalline texture of the diffusion profile was monitored under 
a Zeiss Universal polarizing microscope equipped with a calibrated microscale, and 
the space-time behaviour of the diffusion texture was measured directly. The 
method of analysis and the experimental details of this technique have been described 
elsewhere [3,4]. The overall experimental error in these experiments is within 

10 per cent. 

3. Evaluation of the helical pitch and the concentration 
Figure 1 shows the photomicrographs of the time evolution of the diffusion profile 

in the CBl5j5CB system. According to the surface treatment, the average chol- 
esteric helical axis is oriented perpendicular to the glass surfaces. The observed pitch 
gradient in the diffusion texture experiences discontinuous jumps at locations where 
sharp structural defects (or disclination lines) occur (see figure 1). However, the actual 
or undisturbed helical pitch (which is modified by the concentration gradient) 
is subject to continuous changes [4 (c), 4 (e)]. The exact relation between the undis- 
turbed pitch and the concentration of the chiral solute in dilute solutions is given 
by [9, 101 

P k  = y / c k ,  (3) 

where P k  is the undisturbed pitch of the solution at the concentration c k ,  and y is 
the proportionality constant whose value depends on the molecular structure, 
temperature and the extent of the liquid crystal-surface interactions. 

In the presence of a concentration gradient, the relation between the undisturbed 
pitch and the film thickness is given by [3 (b)] 

where k = 1,2,3, . . . , represent the locations of the corresponding pk at the mid- 
distance between the observed successive disclination lines (figure 1). Since, during the 
relaxation of the pitch gradient, pk values at the mid-distance points should remain 
constant, evaluation of the undisturbed pitch values at the disclination lines is also 
possible. At each disclination line, the observed pitch is subjected to a discontinuous 
change from k to k + 1,  whereas the actual pitch changes continuously. Consequently, 
by knowing the x values at the disclination lines, their corresponding undisturbed 
pitch values were determined by interpolation from P k  versus x plots. For simplicity we 
designate the undisturbed pitch at the disclination lines bypk- I , k ,  i.e. at k = 1,2,3, . . . 
they are presented by pol,  p 1 2 ,  p23 . . . , respectively. The exact values of pk and pk- l ,k  
are tabulated in the table. 

Determination of the concentrations attributed to the pk and Pk- , . h  values was 
carried out in two steps. First, we calibrated equation (3) by calculating y. This 
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Mass transport in liquid crystals 457 

Pitch and concentration values in the diffusion profile of CB15/5CB at d = 5 x 10-3cm and 
T = 23.5”C. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 

~ 

k ( k  - 1, k )  p/104cm 

152 
100 
63.5 
50 
40 
33.5 
27.5 
25 
22 
20 
17.5 
15.6 
16 

po = 6.2 

c/i03 g ml- 

2.00 
3.05 
4.80 
6.15 
7.65 
9.15 

11.10 
12.25 
13.85 
15.30 
17.50 
18.35 
19.15 

cg = 49.5 

Slope Curve fitting 

3.20 
3.20 
2.80 
2.80 
2.60 
2.50 
2.30 
2.20 
2.20 
2.10 
1.80 
1.80 
1.50 

3.30 
3.25 
2.75 
2.80 
2.40 
2.45 
2.20 
2.15 
1.90 
1.70 
1.25 
1.40 
1 .oo 

was done by substituting the initial concentration c,, = 4.95 per cent (w/w) and 
its corresponding pitch po = 6.2 x 10-4cm in equation (3), which gave 
y = 3.1 x 10-3cm. The po value was obtained from a recent pitch measurement 
study on the CBl5/5CB system [l 13. Secondly, the calibrated equation (3) was used 
to evaluate the concentrations attributed to p k r  pk-1.k values. The calculated con- 
centrations for CBl 5/5CB diffusion profile are also given in the table. 

4. Determination of the diffusion coefficients 
The mathematical solution to equation (2) for the semi-infinite boundary 

condition in one dimension is the gaussian relaxation [2] 

c =  [ M / ( z D t ) ” * ]  exp ( -  x2/4Dt) ,  ( 5 )  

where x and t are the space and time coordinates of the solute with concentration c, 
M is the total amount of the diffusing solute and D is the mutual diffusion coefficient 
of the system which is assumed to be independent of space, time and concentration. 
In general, however, a diffusion coefficient which is not integrated over x ,  t and c is 
not expected to be constant. Note that all the reported literature data on the con- 
centration dependence of D refer to the total concentration of the solute (either the 
initial c or the difference between the initial and final c) rather than the differential or 
local concentrations in the diffusion profile. 

According to equation ( 5 ) ,  it is possible to  select three experimental conditions 
for the analysis of the diffusion profile from a three-dimensional c-x-t surface. In 
figure 2, we show the solution of equation ( 5 )  on a Cartesian coordinate system. The 
c-X-t surface can be analysed experimentally on individual c-x, c-t and x-t planes. 
By proper choice of the experimental constants and variables and by rearrangements 
of the corresponding parameters in equation (9, the analysis of the c-x-t diffusion 
surface and the calculation of the corresponding diffusion coefficients can be carried 
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458 H. Hakemi 

out from the equations 

In[c] = In[M/(nD,,t)"'] - (l/4D,,t)[x2], (6) 

In [c(t' 2)] = In[M/(nD,,)I ' 3  - (x2/4D,,)[tr'], (7) 

[x2/t] = 2D,, In [M2/D,,c'] - 2D,, In [t], (8) 

where D,,, D,, and D,, are the diffusion coefficients measured in the corresponding 
experimental frames. From equations (6), (7) and (8), we determined the corre- 
sponding diffusion coefficients as a function of time, distance and concentration in the 
CBI 5/5CB system. 

C- [M/ (  nDt) 1'2] e x p (  -x34Dt) 

x - t  

from equation ( 5 ) .  
Figure 2 .  An example of a c-x-t diffusion surface in a Cartesian coordinate system calculated 

5. Results and discussion 
5.  I .  Diffusion coeficient versus time 

According to figure 2 and equation (6), the time variation of the diffusion coef- 
ficient D,, can be studied by the analysis of the data on the c-x planes as a function 
of time. In figure 3, we show the time evolution of the concentration distribution in 
CBISjSCB system for a series of c versus x curves. The behaviour of these curves 
clearly demonstrate the gaussian-type relaxations of the spatial distribution of the 
concentrations. In agreement with the diffusion boundary condition, the data also 
show the transient depletion of the solute concentration at  the diffusion source 
(x = 0). 
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Muss transport in liquid crystals 459 

x /cm 
Figure 3. The time evolution of the c versus x concentration distributions from 

the CBI 5/5CB system. 0,  t = 20 600 s; 0, t = 40 700 s; ., t = 5 5  100 s; 0, t 
A, t = 134900s; A ,  t = 157770s. 

i0 

diffusion in 
= 77300s; 

x 2 / c m 2  

Figure 4. Time dependent plots of In c versus xz from equation (6). D,.,, values were determined 
from the linear slopes (see table). 0,  t = 20600s; 0, t = 40700s; ., t = 55 100s; 
0, t = 77300s; A, t = 134900s; A,  t = 157770s. 

From equation (6), we have determined the D,., values as a function of time from the 
typical In [c] versus [x’] plots. In figure 4, we show the dynamic evolution of the In [c] 
versus [x’] plots at different diffusion time scales. The results clearly show that the 
linear behaviour of the curves are in accord with equation (6). Note that in this 
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0 . 0  0 
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t 

2 . 0  
0 2 4 6 8 10 12 14 16 i0 20 22 24 26 

r s 

Figure 5. Time dependence of D,, in the CB15/5CB system. 

analysis D,, is obtained as a function of the instantaneous time, but it is an integral 
value of both concentration and distance. 

The calculated values of D,, from the slopes of the plots in figure 4 are presented 
in figure 5 as a function of the diffusion time. These data indicate that within a shorter 
time scale the diffusion coefficient D,, increases with the diffusion time, whereas above 
a characteristic time t* z ( 2  x 104s), Dcr becomes time independent. The rational 
explanation of this result is that at  the longer time scale (i.e. in the steady state) the 
diffusion coefficient is constant, whereas at the shorter time scale (i.e. in the non- 
steady state) the complex convective material flux in the non-linear region of mass 
transport leads to apparent variation of D,, with time. Within the limits of the present 
experimental uncertainties, the average value of the D,, at the plateau in figure 5 is 
(2.6 k 0.1) x 10~7cm2s- ' .  This average value is equivalent to the integral value of 
the mutual diffusion coefficient of the system, as represented by D in equations ( 2 )  and 
(5). Such correlation can also be obtained by integration of D,, over the total 
experimental diffusion time (excluding the D,, in the non-steady state region) accord- 
ing to 

D = ( D < r )  = J,: Q,dt IS,: dt. (9) 

Consequently, the dynamic analysis of the diffusion profile in the concentration- 
distance profile reveals two distinct diffusion regions of steady state and non-steady 
state which are separated by a characteristic time t* .  The significance of t*  is not yet 
known, but it is expected to be a property of the chemical structure, boundary 
condition and the temperature of the system. 

5.2. Diffusion coqficient versm distance 
Determination of the diffusion coefficient as a function of distance was carried out 

by the analysis of the diffusion profile on the c-t frame at constant distances from the 
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20 

15 

- 
I - 
E 
m 

7 10 0 
\ u 

5 

0 
/ 

2 4 6 8 10 12 14 16 18 ~ 

1 / 1 0 - ~ ~  

Figure 6. Spatial evolution of the c versus t concentration relaxations from diffusion in the 
CB15/5CB system. 0 ,  t = 20600s; 0, t = 40700s; ., t = 55 100s; 0, t = 77300s; 
A, t = 134900s; A ,  t = 157770s. 

diffusion source (see figure 1) .  According to figure 2, the cross-sections of the c-x-t 
surface with planes parallel to the c-t plane should give curves as shown by the 
corresponding contour lines. In figure 6, we show the experimental plots of c versus 
t at various penetration distances in the CBI 5/5CB diffusion profile. Evaluation of the 
diffusion coefficient D,, was carried out from the measurement of the slopes of the linear 
portions of the In [ ~ ( t " ~ ) ]  versus [t-'1 plots according to equation (7). The experimental 
results of D,, as a function of the diffusion distance are shown in figure 7. The linear 
characteristics of the corresponding curves are in accord with equations (5) and (7) 
and with the present diffusion boundary condition. Again, notice that D,, is 
instantaneous with x, but is an integral value of both c and t .  

The relation between D,, and x is presented in figure 8, which also indicates the 
existence of two diffusion regions separated by a characteristic distance x* of - 0.1 cm. 
At the shorter distance region below x*, D,, increases with distance, whereas above 
x* i t  is independent of distance. In analogy with the time behaviour of D,, in the 
previous section, we conclude that in steady state D,, is spatially invariant giving an 
average value of (Dc,) = (2.7 0.1) x 10-7cm2s~ ' .  The quantitative value of (D(,) 
is in good agreement with (D',). This means that the spatial invariance of D,, is also 
a measure of the average diffusion coefficient D (equations (2) and (5)). In fact the 
correlation between D and D,, may be obtained from the spatial integration 

where x* is the characteristic distance separating the steady state from the non-steady 
state diffusion. By neglecting the non-steady state, this integral will give a D,., value 
equivalent to the average value obtained from the plateau value at  the steady state (see 
figure 8). 
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462 H. Hakemi 

c I 
0 0.5 1.0 1 .5  2.0 

t - '1 lo4 5-  

Figurc 7. The spatial variation of In [ ( ( I ) '  * ]  versus ( t ) - '  from equation (7). D,, values were 
determincd from thc linear slopes (see table). 0,  t = 20600s; 0, t = 40700s; 
W, t = 55100s; 0, t = 77300s; A, t = 134900s; A ,  t = 157770s. 

Within the limits of the present experimental error, the time and space analyses of 
the diffusion surface gave invariant diffusion coefficients in steady state with the same 
average value. This value for the CB15/5CB system is D = ( D c , )  = (D(,) = 
2.65 x 10-7cm2s I .  By an approximate calculation from the mobility concept (i.e. 
D = x2/2t) ,  assuming that x* = 0.1 cm and t* = 2 x 104s, we find that at the onset 
of steady state diffusion, D* = 2.5 x 10 'cm2 s I. This is in accord with the average 
diffusion coefficients from the c-x and c-t analyses, showing the analytical correlation 
between the brownian motion and fickian diffusion as a first order approximation 
approach. 

5.3. Difusion coeflicient versus concentration 
The dynamic study of the diffusion profile and determination of the diffusion 

coefficient from the x-t analysis of the cholesteric disclination lines have been reported 
for thermotropic systems [4(c)-(e), 5.61. Recently this approach has been extended to 
lyotropic amphiphilic systems [7,8]. The central assumption in the x-t diffusion 
analysis for the evaluation of D,, is that the disclination lines (or the mid-distance 
between the disclination lines) are the optical manifestations of small volume elements 
with constant solute concentration. The differential concentration within each dis- 
clination (or mid-distance disclination) line is quantitatively manifested by a local 
pitch value ofp, orpk ,,,. Therefore, the space-time trajectory of the disclination lines 
is the brownian motion manifestation of fickian diffusion. In other words, the dif- 
fusive motion of the disclination lines (see figure 1)  can be considered as the brownian 
particles which are subject to a bulk concentration gradient force field. This analogy 
will not affect the outcome of the analysis of the diffusion data, because the math- 
ematical solution of the semi-infinite boundary condition (equation (5)) is the same 
in both brownian motion and fickian diffusion. In fact, equation (8) indicates that the 
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t 

cross-sections of the c-x-t diffusion surface with planes parallel to the x-t plane 
should give linear plots of [x2/r] versus In [t], where D,, could be determined from the 
corresponding linear slopes. 

~ , . h ,  for 
the CBI 5/5CB system. In order to keep the notation as simple as possible, we use c 
instead of ck or pk throughout this section (see also the table). The convergence of the 
x-t trajectories can be explained from the gaussian relaxation behaviours at 
constant concentrations. In figure 10 we show the [x2/t] versus In[?] plots for the 
experimental data of figure 9. In the longer time region, these curves exhibit linear 
behaviour with negative slopes (in accord with equation (8)). From the slopes of these 
lines, we have evaluated the D,, values attributed to the differential concentrations in 
the diffusion profile. These values are also tabulated in the table. 

The data of figure 10 also indicate that regardless of the c, the space-time profile 
for each c is divided into two distinct regions. The long-time region attributed to 
the steady state diffusion is governed by the second term in the right-hand side 
of equation (8) (sections with negative slopes). The short-time regions exhibit non- 
steady state diffusion that their positive functional behaviour is dominated by the first 
term in the right-hand side of equation (8). In order to verify the validity of this 
analogy and to examine the behaviour of D,, in the whole space-time frame, we have 
performed a computer curve fitting procedure to the experimental data. In this 
respect, equation (8) was rearranged to the form 

In figure 9, we show the space-time trajectories of the individual p L  and 

x = [At-Bt ln( r>] ’2 ,  ( 1  1 )  

where 

A = D,, In [M/C(xD,,)’”] 
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T I 

1 1 5  

Figure 9. Space-time trajectories of the disclination lines (bottom) and their mid-distances 
(top) in the diffusion profile of CB15/5CB (see figure 1). 

and 

B = 2D.,,. 

Equation (1 I )  was fitted to the individual curves of figure 9 at successive diffusion 
times, and the corresponding D,x, values were evaluated from the B parameter. The 
results as shown by two examples in figure 11  indicate that in all concentrations, the D,, 
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3.0 

1.0 

0 

0 
0 

0 

0 

6 8 10 12 

In[ f / S ]  

+- 9 L  - I 

+ 

2 

-t- 
8 . 0  ' 9:o , 10'.0 ' l l ' . O  

1 

14 

In [ t / s ]  

Figure 10. The concentration variation of [girl versus In t from equation (8). D,, values were 
determined from the linear slopes (see table). 

first increases with diffusion time becomes independent of time in the long-time 
regime. The time independence of Ox, is identical to those obtained from the slope 
measurements. Accordingly, we found excellent agreements between D,, values 
obtained from the curve fitting and the slope measurements (see table). The poor 
agreement between the data at the higher concentration range is due to the lack of x-t 
trajectory data in the short-time region which provides poor curve fitting results. In 
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Figure 11, The time dependence of D,, obtained from the curve fitting procedure for two 
disclination lines (see equation (1 I ) ) .  

such cases, the D,, values from the slope measurements are more reliable. From these 
results, we confirm that the D,, determined from the slopes of the [x2/t]  versus In t plots 
are indeed obtained in the steady state diffusion and are independent of the space- 
time coordinates. 

The concentration dependence of all diffusion data is shown in figure 12. Note that 
the reported D,, values are only from the slope measurements (see table I) .  The concen- 
tration dependence of D,, is apparently a linear relation. Since the molecular weights 
of the CB15 and 5CB are identical (MW = 249), the concentration dependence of D,, 
must be due to the steric effect arising from the difference in their molecular shape and 
volume. Note that in an ideal situation where the molecular structure of the solute and 
solvent are identical, the concentration should not affect the D,, value (i.e. the D,, 
versus c curve should be a horizontal line). Although D,, can be closely related to the 
self-diffusion coefficients at various concentrations of the CBl 5j5CB mixture, a more 
realistic condition for the study of self-diffusion in these systems can be achieved by 
the use of a solute and solvent with identical chemical structures [3 (b)]. 

The effect of the molecular structure of the solute on the concentration depen- 
dence of the diffusion coefficient was further explored by incorporating the diffusion 
data of cholesteryl oleylcarbonate (COCjSCB) system [8], by correcting the D,, values 
for the mass effect [2]. Note that the molecular weight of COC (MW = 681) is about 
2.5 times larger than for 5CB. A comparison between the concentration dependence 
of D,, values in the COCj5CB and CBlSjSCB systems in figure 12 clearly indicates 
that, in the absence of the mass effect, the D,, of COCjSCB are significantly smaller 
than those for the CB15/5CB system. The origin of the non-linear behaviour of D,, 
in the COCj5CB system may be due to the contribution of the cholesteric pitch 
(originated by the mesophase-surface interactions) to the diffusion coefficient values. 
This is a reasonable speculation, because as we see in figure 11 ,  the effective non- 
linearity of the D,, data at higher concentrations (or lower pitch values) in both 
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Figure 12. Concentration dependence of D,, in CBlSjSCB (filled circles) and COCjSCB 
(open circles) mixtures. 0 ,  k = 0, 1); 0 ,  k = (1,2). 

systems could be attributed to the contributions of the larger twist elastic energies 
of smaller pitch values. Furthermore, by acknowledging that the effect of the con- 
centration gradient is negligible, D,, can be closely related to the apparent self- 
diffusion coefficient of the system in each concentration. Accordingly, we evaluated 
the self-diffusion coefficient for the pure 5CB solvent by extrapolation of the D,,-c 
data to c = 0. In this extrapolation procedure, polynomial functions of the second 
degrees were fitted to the diffusion data of the CBl 5/5CB and COCj5CB systems giving: 

CBl5/5CB: DYr/cm2s-’ = (3.4 x lo-’) - (1.2 x 10-5c /10’gml~’)  

+ (1.2) x 1 0 - ~ ) ( ~ / 1 0 ~ g m l - ’ ) * ,  

COC/5CB: DIr/cm2s-’ = (3.4 x 10 7, - (3.3 x 10-5)(c/107gml-’) 

+ (9.6 x 10~4)(c /10’gml~’)2 .  

At c = 0, the first terms on the right-hand sides of the above relations give the 
same values for the self-diffusion coefficient for pure 5CB; i.e. D,(5CB) = 3.4 x 
10 'em's-'. Note that the difference between D, (5CB) in this study and the values 
reported previously is due to the inappropriate mass correction approach used [4]. 

The average diffusion coefficient D of the system can also be obtained by inte- 
gration of D,, over the entire concentration range of the diffusion profile according 
to 

c I1 

D = <D,l) = [ ~ i c o l ~ ,  DYfdC, (12) 

where Co is the initial concentration of the diffusing solute (see table I ) .  In practice, 
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however, since the values of D,, are not known in the very dilute region of concen- 
tration, the integral of equation (12) was replaced by the approximate summation 

where D, and c, are the corresponding D,, and c values for n = 1-13 experimental 
data. Within the limits of the present experimental error, the evaluated (Dy,) is in 
close agreement with the (D(,) and ( D ( , )  values obtained in @5.1 and 5.2. 

6. Conclusions 
In the present analytical approach, we used the unique features of the OMMT 

technique and made a detailed analysis of the diffusion profile in a binary liquid- 
crystalline system. We analysed the c-x-/ diffusion surface in three individual experi- 
mental coordinate frames, and determined the corresponding values of instantaneous 
and integral diffusion coefficients. The average values of the diffusion coefficients from 
the steady state region were invarient with respect to space and time, whereas the 
diffusion coefficients in the non-steady state were dependent on both time and 
distance. From the space-time analysis of the diffusion profile, we determined the 
concentration dependence of the mutual diffusion coefficient of the system. The 
present experimental method provides a comprehensive analysis of the steady state 
diffusion, as well as information on the non-steady state region, which cannot be 
achieved by conventional mass transport techniques. 
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